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Applications of High-Precision Arithmetic 
in Modern Scientific Computing 

  Highly nonlinear computations. 
  Computations involving highly ill-conditioned linear systems. 
  Computations involving data with very large dynamic range. 
  Large computations on highly parallel computer systems. 
  Computations where numerical sensitivity is not currently a major 

problem, but periodic testing is needed to ensure that results are reliable. 
  Research problems in mathematics and mathematical physics that 

involve constant recognition and integer relation detection. 

Few physicists, chemists or engineers are highly expert in numerical 
analysis.  Thus high-precision arithmetic is often a better remedy for 
severe numerical round-off error, even if the error could, in principle, be 
improved with more advanced algorithms or coding techniques. 
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Growth of Condition Number with 
System Size 

Consider the very simple differential equation y’’(x) = -f(x).  Discretization 
leads to the matrix:   



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2





The condition number of this matrix (the quotient of the largest eigenvalue 
to the smallest eigenvalue) is readily seen to be approximately 

κ(n) ≈ 4(n + 1)2

π2

For modest-sized n, many systems of this type (depending on the right-
hand side) cannot be reliably solved using 64-bit arithmetic. 
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Available High-Precision Facilities 

Vendor-supported arithmetic: 
   Total  Significant 

Type   Bits  Digits  Support 
IEEE Double  64  16  In hardware on almost all systems. 
IEEE Extended  80  18  In hardware on Intel and AMD systems. 
IEEE Quad  128  33  In software from some vendors (50-100X 

      slower than IEEE double). 

Non-commercial (free) software: 
   Total  Significant 

Type   Bits  Digits  Support 
Double-double  128  32  DDFUN90, QD. 
Quad-double  256  64  QD. 
Arbitrary  Any  Any  ARPREC, MPFUN90, GMP, MPFR. 

Commercial software:  Mathematica, Maple. 
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LBNL’s High-Precision Software 

  QD:  double-double (31 digits) and quad-double (62 digits).  
  ARPREC:  arbitrary precision. 
  Low-level routines written in C++. 
  C++ and Fortran-90 translation modules permit use with existing C++ and 

Fortran-90 programs -- only minor code changes are required. 
  Includes many common functions:  sqrt, cos, exp, gamma, etc. 
  PSLQ, root finding, numerical integration. 

Available at:  http://www.experimentalmath.info 

Authors: Xiaoye Li, Yozo Hida, Brandon Thompson and DHB 
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GMP and MPFR 

GNU Multiprecision Library: 
  High-level signed integer arithmetic functions (mpz).  
  High-level rational arithmetic functions (mpq).  
  High-level floating-point arithmetic functions (mpf).  
  C++ class-based interface to all of the above. 
Available at:  http://gmplib.org/ 

MPFR:   
  C library of floating-point accurately rounding arithmetic functions. 
Available at:  http://www.mpfr.org 

C++ high-level interfaces based on MPFR:  
  MPFRCPP  
  MPFR++ 
  GMPFRXX 
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Some Real-World Applications of High-
Precision Arithmetic 

  Supernova simulations (32 or 64 digits). 
  Climate modeling (32 digits). 
  Planetary orbit calculations (32 digits). 
  Coulomb n-body atomic system simulations (32-120 digits). 
  Schrodinger solutions for lithium and helium atoms (32 digits). 
  Electromagnetic scattering theory (32-100 digits). 
  Studies of the fine structure constant of physics (32 digits). 
  Scattering amplitudes of quarks, gluons and bosons (32 digits). 
  Theory of nonlinear oscillators (64 digits). 
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Application of High-Precision Arithmetic: 
Supernova Simulations 

  Researchers at LBNL are using QD to 
solve for non-local thermodynamic 
equilibrium populations of iron and other 
atoms in the atmospheres of supernovas. 

  Iron may exist in several species, so it is 
necessary to solve for all species 
simultaneously. 

  Since the relative population of any state 
from the dominant state is proportional to 
the exponential of the ionization energy, 
the dynamic range of these values can be 
very large. 

  The quad-double portion now dominates 
the entire computation. 

P. H. Hauschildt and E. Baron, “The Numerical Solution of the Expanding Stellar Atmosphere Problem,” 
Journal Computational and Applied Mathematics, vol. 109 (1999), pg. 41-63. 
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Coulomb N-Body Atomic System 
Simulations 

  Alexei Frolov of Queen’s University in Canada has used MPFUN90 to 
solve a generalized eigenvalue problem that arises in Coulomb n-body 
interactions. 

  Matrices are typically 5,000 x 5,000 and are very nearly singular. 
  Frolov has also computed elements of the Hamiltonian matrix and the 

overlap matrix in four- and five-body systems. 
  These computations typically require 120-digit arithmetic. 

“We can consider and solve the bound state few-body problems which have 
been beyond our imagination even four years ago.” – Frolov 

A. M. Frolov and DHB, “Highly Accurate Evaluation of the Few-Body Auxiliary Functions and Four-Body 
Integrals,” Journal of Physics B, vol. 36, no. 9 (14 May 2003), pg. 1857-1867. 
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The PSLQ Integer Relation Algorithm 

Let (xn) be a given vector of real numbers.  An integer relation algorithm 
finds integers (an) such that  

1.  H. R. P. Ferguson, DHB and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,” 
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369. 
2.  DHB and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,” 
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736. 

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).  

At the present time the “PSLQ” algorithm of mathematician-sculptor 
Helaman Ferguson is the most widely used integer relation algorithm.  It 
was named one of ten “algorithms of the century” by Computing in Science 
and Engineering. 

PSLQ (or any other integer relation scheme) requires very high precision (at 
least n*d digits, where d is the size in digits of the largest ak), both in the 
input data and in the operation of the algorithm. 

a1x1 + a2x2 + · · · + anxn = 0
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Decrease of log10(min |xi|) in PSLQ 
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Bifurcation Points in Chaos Theory 

exhibits 8-way periodicity instead 
of 4-way periodicity.    

By means of a sequential 
approximation scheme, one can 
obtain the numerical value of t to 
any desired precision: 

Let t = B3 = the smallest r such 
that the “logistic iteration” 

3.54409035955192285361596598660480454058309984544457367545781… 

Applying PSLQ to (1, t, t2, t3, …, t12), we obtained the result that t is a root of 
the polynomial: 

xn+1 = rxn(1− xn)

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7

−193t8 − 40t9 + 48t10 − 12t11 + t12
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The BBP Formula for Pi 

In 1996, at the suggestion of Peter Borwein, Simon Plouffe used DHB’s 
PSLQ program and arbitrary precision software to discover this new 
formula for π: 

This formula permits one to compute binary (or hexadecimal) digits of pi 
beginning at an arbitrary starting position, using a very simple scheme 
that can run on any system with standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-n formulas of this type exist for π, 
except n = 2m. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic Constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP 
Formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
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Tanh-Sinh Quadrature 

Given f(x) defined on (-1,1), define g(t) = tanh (π/2 sinh t).  Then setting 
x = g(t) yields 

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for 
large t, the product  f(g(t)) g’(t)  typically is a nice bell-shaped function for 
which the Euler-Maclaurin formula implies that the simple summation above 
is remarkably accurate.  Reducing h by half typically doubles the number of 
correct digits. 

For our applications, we have found that tanh-sinh is the best general-
purpose integration scheme for functions with vertical derivatives or 
singularities at endpoints, or for any function at very high precision (> 1000 
digits).  Otherwise we use Gaussian quadrature. 

1.  DHB, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of Three High-Precision Quadrature 
Schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329. 
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of RIMS, 
Kyoto University, vol. 9 (1974), pg. 721–741. 

∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

N∑

j=−N

wjf(xj),
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Computing High-Precision Values of 
Multi-Dimension Integrals 

Computing multi-hundred digit numerical values of 2-D, 3-D and higher-
dimensional integrals remains a major challenge. 

Typical approach: 
  Consider the 2-D or 3-D domain divided into 1-D lines. 
  Use Gaussian quadrature (for regular functions) or tanh-sinh quadrature 

(if function has vertical derivates or singularities on boundaries) on each 
of the 1-D lines. 

  Discontinue evaluation beyond points where it is clear that function-weight 
products are smaller than the “epsilon” of the precision level (this works 
better with tanh-sinh). 

Even with “smart” evaluation that avoids unnecessary evaluations, the 
computational cost increases very sharply with dimension: 

  If 1000 evaluation points are required in 1-D for a given precision, then 
typically 1,000,000 are required in 2-D and 1,000,000,000 in 3-D, etc. 
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The Sparse Grid Scheme 

The “sparse grid” scheme for numerical integration in multiple dimensions 
approximates an integral by evaluating a succession of nested lower-
resolution quadrature rules.  For example, in two dimensions: 
  Level 1:  1x1  (i.e., evaluate function only at origin) 
  Level 2:  (1x3 + 3x1) – (1x1) 
  Level 3:  (1x5 + 3x3 + 5x1) – (1x3 + 3x1) 
  Level 4:  (1x9 + 3x5 + 5x3 + 9x1) – (1x5 + 3x3 + 5x1) 
  Level 5:  (1x17 + 3x9 + 5x5 + 9x3 + 17x1) – (1x9 + 3x5 + 5x3 + 9x1) 

The sparse grid theory shows that for broad classes of functions, this multi-
level scheme achieves reasonably fast convergence. 

Note that in high dimensions, most points are a relatively far distance from 
the origin, where the multi-dimensional weight of the quadrature scheme 
(and, most likely, the function itself) have small values. 

Thus a nested scheme (like sparse grid) that avoids the distant “corners” 
achieves a significant savings in high dimensions. 
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A Log-Tan Integral Identity 

This identity arises from analysis 
of volumes of knot complements in 
hyperbolic space.  This is simplest 
of 998 related identities. 

We have verified this numerically 
to 20,000 digits (using highly 
parallel tanh-sinh quadrature). 

DHB, J. M. Borwein, V. Kapoor and E. Weisstein, 
“Ten Problems in Experimental Mathematics,” 
American Mathematical Monthly, vol. 113, no. 6 
(Jun 2006), pg. 481-409 . 

24
7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−
√

7

∣∣∣∣∣ dt = L−7(2) =

∞∑

n=0

[
1

(7n + 1)2
+

1
(7n + 2)2

− 1
(7n + 3)2

+
1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
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Ising Integrals 

We recently applied our methods to study three classes of integrals that 
arise in the Ising theory of mathematical physics – Dn and two others: 

where in the last line uk = t1 t2 … tk. 
DHB, J. M. Borwein and R. E. Crandall, “Integrals of the Ising Class,” Journal of Physics A: Mathematical 
and General, vol. 39 (2006), pg. 12271-12302. 

Cn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)2

du1

u1
· · · dun

un

Dn :=
4
n!

∫ ∞

0
· · ·

∫ ∞

0

∏
i<j

(
ui−uj

ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

En = 2
∫ 1

0
· · ·

∫ 1

0




∏

1≤j<k≤n

uk − uj

uk + uj




2

dt2 dt3 · · · dtn
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Computing and Evaluating Cn 

where K0 is the modified Bessel function.  In this form, the Cn constants 
appear naturally in in quantum field theory (QFT).   

We used this formula to compute 1000-digit numerical values of various 
Cn, from which the following results and others were found, then proven: 

We observed that the multi-dimensional Cn integrals can be transformed 
to 1-D integrals: 

C1 = 2
C2 = 1

C3 = L−3(2) =
∑

n≥0

(
1

(3n + 1)2
− 1

(3n + 2)2

)

C4 =
7
12

ζ(3)

Cn =
2n

n!

∫ ∞

0
tKn

0 (t) dt
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Limiting Value of Cn 

The Cn numerical values appear to approach a limit.  For instance, 

What is this limit?  We copied the first 50 digits of this numerical value into 
the online Inverse Symbolic Calculator (ISC): 
http://ddrive.cs.dal.ca/~isc 

The result was: 

where gamma denotes Euler’s constant.  Finding this limit led us to the 
asymptotic expansion and made it clear that the integral representation of 
Cn is fundamental. 

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . .

lim
n→∞

Cn = 2e−2γ
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Other Ising Integral Evaluations 

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3

+16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2

+40π2 log2 2− 62π2/3 + 40(π2 log 2)/3 + 88 log4 2
+464 log2 2− 40 log 2

where Lin(x) is the polylog function.  D2, D3 and D4 were originally provided 
to us by mathematical physicist Craig Tracy, who hoped that our tools could 
help identify D5. 
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The Ising Integral E5 

We were able to reduce E5, 
which is a 5-D integral, to an 
extremely complicated 3-D 
integral. 

We computed this integral to 
250-digit precision, using a 
highly parallel, high-precision 
3-D quadrature program.  
Then we used a PSLQ 
program to discover the 
evaluation given on the 
previous page. 

We also computed D5 to 500 
digits, but were unable to 
identify it.  The digits are 
available if anyone wishes to 
further explore this question. 

E5 =
∫ 1

0

∫ 1

0

∫ 1

0

[
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2

(
−

[
4(x + 1)(xy + 1) log(2)

(
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

((
y2 + 1

)
z2 + 4(y+

1)z + 5) x5 + y2
(
4y(y + 1)z3 + 3

(
y2 + 1

)
z2 + 4(y + 1)z − 1

)
x4 + y

(
z

(
z2 + 4z

+5) y2 + 4
(
z2 + 1

)
y + 5z + 4

)
x3 +

((
−3z2 − 4z + 1

)
y2 − 4zy + 1

)
x2 − (y(5z + 4)

+4)x− 1)] /
[
(x− 1)3(xy − 1)3(xyz − 1)3

]
+

[
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
(
3(z − 1)2z3y5 + z2

(
5z3 + 3z2 + 3z + 5

)
y4 + (z − 1)2z

(
5z2 + 16z + 5

)
y3 +

(
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

)
y2 + 3

(
−2z4 + z3 + 2

z2 + z − 2
)
y + 3z3 + 5z2 + 5z + 3

)
x5 + y2

(
7(z − 1)2z4y6 − 2z3

(
z3 + 15z2

+15z + 1) y5 + 2z2
(
−21z4 + 6z3 + 14z2 + 6z − 21

)
y4 − 2z

(
z5 − 6z4 − 27z3

−27z2 − 6z + 1
)
y3 +

(
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

)
y2 − 2

(
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
)
y + 7z4 − 2z3 − 42z2 − 2z + 7

)
x4 − 2y

(
z3

(
z3

−9z2 − 9z + 1
)
y6 + z2

(
7z4 − 14z3 − 18z2 − 14z + 7

)
y5 + z

(
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
)
y4 +

(
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

)
y3 − 3

(
3z5

+6z4 − z3 − z2 + 6z + 3
)
y2 −

(
9z4 + 14z3 − 14z2 + 14z + 9

)
y + z3 + 7z2 + 7z

+1)x3 +
(
z2

(
11z4 + 6z3 − 66z2 + 6z + 11

)
y6 + 2z

(
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
(
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

)
y4 +

(
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
)
y3 − 2

(
33z4 + 2z3 − 22z2 + 2z + 33

)
y2 +

(
6z3 + 26

z2 + 26z + 6
)
y + 11z2 + 10z + 11

)
x2 − 2

(
z2

(
5z3 + 3z2 + 3z + 5

)
y5 + z

(
22z4

+5z3 − 22z2 + 5z + 22
)
y4 +

(
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

)
y3 +

(
3z4−

22z3 − 26z2 − 22z + 3
)
y2 +

(
3z3 + 5z2 + 5z + 3

)
y + 5z2 + 22z + 5

)
x + 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2
(
15z2 + 2z + 15

)
+ y2

(
15z4

−2z3 − 90z2 − 2z + 15
)

+ 15
]
/

[
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
]
−

[
4(x + 1)(y + 1)(yz + 1)

(
−z2y4 + 4z(z + 1)y3 +

(
z2 + 1

)
y2

−4(z + 1)y + 4x
(
y2 − 1

) (
y2z2 − 1

)
+ x2

(
z2y4 − 4z(z + 1)y3 −

(
z2 + 1

)
y2

+4(z + 1)y + 1)− 1) log(x + 1)] /
[
(x− 1)3x(y − 1)3(yz − 1)3

]
− [4(y + 1)(xy

+1)(z + 1)
(
x2

(
z2 − 4z − 1

)
y4 + 4x(x + 1)

(
z2 − 1

)
y3 −

(
x2 + 1

) (
z2 − 4z − 1

)

y2 − 4(x + 1)
(
z2 − 1

)
y + z2 − 4z − 1

)
log(xy + 1)

]
/

[
x(y − 1)3y(xy − 1)3(z−

1)3
]
−

[
4(z + 1)(yz + 1)

(
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3

((
y2+

1) x2 − 4(y + 1)x− 3
)
z5 − y2

(
4y(y + 1)x3 + 5

(
y2 + 1

)
x2 + 4(y + 1)x + 1

)
z4+

y
(
y2x3 − 4y(y + 1)x2 − 3

(
y2 + 1

)
x− 4(y + 1)

)
z3 +

(
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x + 4)y + 4)z − 1
)
log(xyz + 1)

]
/

[
xy(z − 1)3z(yz − 1)3(xyz − 1)3

])]

/
[
(x + 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

]
dx dy dz
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Recursions in Ising Integrals 

Consider the 2-parameter class of Ising integrals (which arises in QFT for odd k): 

After computing 1000-digit numerical values for all n up to 36 and all k up to 75 
(performed on a highly parallel computer system), we discovered (using PSLQ) 
linear relations in the rows of this array.  For example, when n = 3: 

Similar, but more complicated, recursions have been found for all n. 
DHB, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,” 
Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer/pdf. 

J. M. Borwein and B. Salvy, “A Proof of a Recursion for Bessel Moments,” Experimental Mathematics, vol. 17 
(2008), pg. 223-230.   

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8

Cn,k =
4
n!

∫ ∞

0
· · ·

∫ ∞

0

1
(∑n

j=1(uj + 1/uj)
)k+1

du1

u1
· · · dun

un
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Four Hypergeometric Evaluations 

DHB, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic Integral Evaluations of Bessel Moments,” 
Journal of Physics A:  Mathematical and General, vol. 41 (2008), pg 205203.


c3,0 =
3Γ6(1/3)
32π22/3

=
√

3π3

8 3F2

(
1/2, 1/2, 1/2

1, 1

∣∣∣∣∣
1
4

)

c3,2 =
√

3π3

288 3F2

(
1/2, 1/2, 1/2

2, 2

∣∣∣∣∣
1
4

)

c4,0 =
π4

4

∞∑

n=0

(2n
n

)4

44n
=

π4

4 4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

c4,2 =
π4

64

[
44F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

−34F3

(
1/2, 1/2, 1/2, 1/2

2, 1, 1

∣∣∣∣∣1
)]
− 3π2

16
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2-D Integral in Bessel Moment Study 

We conjectured (and later proved) 

Here K denotes the complete 
elliptic integral of the first kind 

Note that the integrand function 
has singularities on all four sides 
of the region of integration. 

We were able to evaluate this 
integral to 120-digit accuracy, 
using 1024 cores of the “Franklin” 
Cray XT4 system at LBNL. 

c5,0 =
π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sinφ)√
cos2 θ cos2 φ + 4 sin2(θ + φ)

dθ dφ
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Heisenberg Spin Integrals 

In another recent application of these methods, we investigated the following 
“spin integrals,” which arise from studies in mathematical physics: 

H. E. Boos, V. E. Korepin, Y. Nishiyama and M. Shiroishi, “Quantum Correlations and Number Theory,” 
Journal of Physics A: Mathematical and General, vol. 35 (2002), pg. 4443.  

P (n) :=
πn(n+1)/2

(2πi)n
·
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
U(x1 − i/2, x2 − i/2, · · · , xn − i/2)

× T (x1 − i/2, x2 − i/2, · · · , xn − i/2) dx1dx2 · · · dxn

where

U(x1 − i/2, x2 − i/2, · · · , xn − i/2) =
∏

1≤k<j≤n sinh[π(xj − xk)]
∏

1≤j≤n in coshn(πxj)

T (x1 − i/2, x2 − i/2, · · · , xn − i/2) =
∏

1≤j≤n(xj − i/2)j−1(xj + i/2)n−j

∏
1≤k<j≤n(xj − xk − i)
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Evaluations of P(n) 
Derived Analytically, Confirmed Numerically 

P (1) =
1
2
, P (2) =

1
3
− 1

3
log 2, P (3) =

1
4
− log 2 +

3
8
ζ(3)

P (4) =
1
5
− 2 log 2 +

173
60

ζ(3)− 11
6

ζ(3) log 2− 51
80

ζ2(3)− 55
24

ζ(5) +
85
24

ζ(5) log 2

P (5) =
1
6
− 10

3
log 2 +

281
24

ζ(3)− 45
2

ζ(3) log 2− 489
16

ζ2(3)− 6775
192

ζ(5)

+
1225

6
ζ(5) log 2− 425

64
ζ(3)ζ(5)− 12125

256
ζ2(5) +

6223
256

ζ(7)

−11515
64

ζ(7) log 2 +
42777
512

ζ(3)ζ(7)

and a much more complicated expression for P(6).  Run times increase very 
rapidly with the dimension n: 

n Digits Processors Run Time
2 120 1 10 sec.
3 120 8 55 min.
4 60 64 27 min.
5 30 256 39 min.
6 6 256 59 hrs.



28 

Box Integrals 

The following integrals appear in studies, say, of the average distance 
between points in a cube, or the average electric potential in a cube: 

Bn(s) :=
∫ 1

0
· · ·

∫ 1

0

(
r2
1 + · · · + r2

n

)s/2
dr1 · · · drn

∆n(s) :=
∫ 1

0
· · ·

∫ 1

0

(
(r1 − q1)2 + · · · + (rn − qn)2

)s/2
dr1 · · · drn dq1 · · · dqn

DHB, J. M. Borwein and R. E. Crandall, “Box Integrals,” Journal of Computational and Applied Mathematics, 
vol. 206 (2007), pg. 196-208.  
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Evaluations of Box Integrals 

B2(−1) = log
(
3 + 2

√
2
)

B3(−1) = −π

4
− 1

2
log 2 + log(5 + 3

√
3)

B1(1) =
1
2

B2(1) =
√

2
3

+
1
3

log
(√

2 + 1
)

B3(1) =
√

3
4

+
1
2

log
(
2 +

√
3
)
− π

24

B4(1) =
2
5

+
7
20

π
√

2− 1
20

π log
(
1 +

√
2
)

+ log (3)− 7
5
√

2 arctan
(√

2
)

+
1
10
K0

where 

K0 :=
∫ 1

0

log(1 +
√

3 + y2)− log(−1 +
√

3 + y2)
1 + y2

dy = 2
∫ 1

0

arctanh
(

1√
3+y2

)

1 + y2
dy
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Evaluations of Box Integrals, Cont. 

∆2(−1) =
4
3
− 4

3
√

2 + 4 log(1 +
√

2)

∆1(1) =
1
3

∆2(1) =
1
15

(
2 +

√
2 + 5 log(1 +

√
2)

)
,

∆3(1) =
4

105
+

17
105

√
2− 2

35
√

3 +
1
5

log(1 +
√

2) +
2
5

log(2 +
√

3)− 1
15

π,

∆4(1) =
26
15

G− 34
105

π
√

2− 16
315

π +
197
420

log (3) +
52
105

log
(
2 +

√
3
)

+
1
14

log
(
1 +

√
2
)

+
8

105
√

3 +
73
630

√
2− 23

135
+

136
105

√
2 arctan

(
1√
2

)

− 1
5

π log
(
1 +

√
2
)

+
4
5

α log
(
1 +

√
2
)
− 4

5
Cl2 (α)− 4

5
Cl2

(
α +

π

2

)

where G is Catalan’s constant and Cl denotes the Clausen function. 
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New Result (18 Jan 2009) 

∆3(−1) =
2√
π

∫ ∞

0

(−1 + e−u2
+
√

π u erf(u))3

u6
du

=
1
15

(
6 + 6

√
2− 12

√
3− 10π + 30 log(1 +

√
2) + 30 log(2 +

√
3)

)

As in many of the previous results, this was found by first computing the 
integral to high precision (250 to 1000 digits), conjecturing possible terms 
on the right-hand side, then applying PSLQ to look for a relation.  We now 
have proven this result. 

This and similar integrals have recently arisen in problems suggested by 
neuroscientists – e.g., the average distance between synapses in a mouse 
brain. 

Ref:  Work in progress!  Will be written up soon. 
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Summary 

  Numerous state-of-the-art large-scale scientific calculations now require 
numerical precision beyond conventional 64-bit floating-point arithmetic. 

  The emerging “experimental” methodology in mathematics and 
mathematical physics often requires hundreds or even thousands of 
digits of precision. 

  Double-double, quad-double and arbitrary precision software libraries are 
now widely available (and in most cases are free). 

  High-precision evaluation of integrals, followed by constant-recognition 
techniques, has been a particularly fruitful area of recent research, with 
many new results in mathematics and mathematical physics. 

  There is a critical need to develop faster techniques for high-precision 
numerical integration in multiple dimensions. 


